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We have analyzed the patterns formed by water flowing over an inhomogeneous incline and have found
fractal scaling behavior in the downhill direction, withdf51.35–1.45. The observed behavior is consistent
with recent theoretical predictions involving nonlinear fluid flow close to threshold conditions.
@S1063-651X~96!00212-7#

PACS number~s!: 47.55.Mh, 68.35.Fx

I. INTRODUCTION

Stream patterns which form when water flows over an
inhomogeneous surface are a commonly observed phenom-
enon in nature. Examples include the patterns which form on
wet shower stalls, on windowpanes during rain storms, and
on cool inclined surfaces when exposed to humidity. Such
patterns consist of a hierarchy of streams which exhibit both
splitting and joining, the net effect being a series of crossings
which occur whenever two or more streams encounter each
other as they make their way down the incline. The behavior
is distinct from that of a river network@1–4# where, due to
the effects of erosion, smaller tributaries flow into larger
paths to form a treelike structure without crossings.

In contrast, the stream patterns of interest here form from
water droplets which impact or condense onto the surface of
a noneroding, inhomogeneous surface inclined at some
angle. They remain in place until they acquire a critical mass
such that the gravitational forces which pull the droplets
downward are able to overcome the various forces~arising
from surface tension effects, surface roughness, chemical in-
homogeneities, etc.! which tend to pin the droplets in place.
The droplets’ motion, once initiated, does not proceed in a
direct downward fashion on account of the surface irregulari-
ties which are encountered. Instead it is slowed, redirected,
or stopped entirely depending on the nature of the irregulari-
ties encountered. As the total water mass increases, it must,
however, eventually reach a threshold beyond which con-
nected streams flow with finite velocity from top to bottom.
The transition is in many ways reminiscent of avalanches@5#
and depinning transitions which occur in a variety of systems
@6#.

We report here a measurement of the scaling properties of
such a pattern for water flowing close to threshold condi-
tions, and compare this result to recent theoretical predic-
tions for fluid flow over randomly rough surfaces@7,8#.

II. MEASUREMENTS AND IMAGE
ANALYSIS PROCEDURE

The particular stream patterns which we studied were
formed by water flow over a dirty glass surface during a rain
storm. Although in principle some erosion~‘‘washing’’ ! of
the surface contaminants occurred during the measurements,
we did not observe this effect for the surfaces we selected to

study, the planar rear windshields of unwashed cars. Such
surfaces are inhomogeneous, presenting the water droplets
with a random distribution of irregularities and pinning sites
as they make their way down the surface. A photograph of a
typical rain pattern is depicted in Fig. 1.

Figures 2~a! and 2~b! present two digitized images of
typical patterns photographed in light rain conditions. Stream
crossings are common in the left-hand image and less so in
the right-hand image. In both images, however, a number of
continuous or flowing~spanning top to bottom! and isolated
streams are in evidence. In addition there are channels which
flow into streams, which we refer to as tributaries~see Fig.
3!. The tributaries feed those streams which span the top to
bottom. We note that the average stream width varies little
from top to bottom, in direct contrast with river networks
where the thinner streams flow into thicker ones@2#.

We used four different methods to calculate the fractal
dimensiondf @6,9,10# of the stream patterns.

Method A.By covering the structure with boxes of differ-
ent sizese, with e→0, the fractal dimensiondf is obtained as

N~e!;e2df , ~1!

whereN is the number of boxes of sizee needed to cover the
water patterns.

FIG. 1. Photograph of a typical rain pattern taken in light rain
conditions.
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Method B.The mass of a particular streamm scales with
its downhill lengthl as

m~ l !; l df . ~2!

In this method many streams are analyzed, and each one is
represented by a curve from which the fractal dimension is
calculated. An average over all curves yields the final value
of df .

Method C.The total mass of the streamsM whose total
length isL scales as

M ~L !;Ldf . ~3!

In this method each stream in the plot is represented by a
point instead of a curve. After plotting on a log-log graph,
these points yield a straight line whose slope is the fractal
dimension.

Method D.The last method considered is the pair corre-
lation function method@9# defined as

c~rW ![N21(
rW0

r~rW0!r~rW01rW !. ~4!

Here,r is the local density defined asr(rW)51 if the point at
position rW belongs to the structure andr(rW)50 otherwise,
and N is the total number of points used to calculate the
correlation function.c(rW) represents the expectation value
that two points separated by a distancerW belong to the pat-
tern.

Isotropic fractal structures are characterized by a correla-
tion function which does not depend on the direction ofrW, so
that c(rW)5c(r ). For the case at hand, however, the vertical
and horizontal directions are anisotropic. We therefore take
rW parallel to the downhill direction~i.e., urWu5 l !.

The correlation function satisfies a power law of the form

c~ l !; l2a. ~5!

The mass of a streamm( l ) can be expressed in terms of
the correlation functionc( l ) from which it follows that the
fractal dimension isdf522a @9#.

When using method A we took into account the small
distortion of the picture due to the fact that the photograph
was taken at a slight angle with respect to the surface normal,
and we superimposed trapezoidal~instead of the usual
squares! grids onto this figure with various mesh sizese,
wheree is proportional to the inverse of the area of the total
grid that covers the entire structure.

For the other three listed methods, we digitized the pic-
tures with an Apple Scanner Model 16 with resolution 70
dots per inch. The scanner yields a matrix whose elements
are 1 and 0, giving 1 when the point belongs to the water
structure and 0 when it does not. We used a ‘‘burning’’
algorithm @11# to compute the mass of each isolated stream,
and obtained the fractal dimension using methods B and C.
In each of these methods, the mass of the stream is the num-
ber of sites in it given by the output matrix of the Apple
Scanner. Typical digitized images are shown in Fig. 2.

III. RESULTS

We calculateddf for ~i! individual tributaries and isolated
streams and~ii ! the entire pattern, i.e., not only tributaries
and isolated streams but also streams that span the entire
image from top to bottom.

(i) Tributaries and isolated streams.To calculate the

FIG. 2. ~a! and ~b! Two examples of digitized images of rain
patterns. Crossings are observed as well as many flowing streams,
isolated clusters, and tributaries. The size of the picture does not
allow one to see the total length of flowing streams. The first image
has real dimensions: 25.3 cm323.9 cm.

FIG. 3. Schematic representation of the tributaries and isolated
and flowing streams.
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fractal dimension of these structures, we removed the
streams spanning top to bottom in all of the digitized images
of the windshields. Figure 7 shows one of the images ob-
tained, after having done so. We applied methods A, B, and
C listed above to calculatedf , and these results are shown,
respectively, in Figs. 4–6. We have averaged over six differ-
ent windshields for methods B and C whereas we applied
method A to only two water patterns, one of which is shown
in Fig. 7.

In the present case we also used method D to calculatedf .
However, due to the small length of the tributaries and iso-
lated streams, the scaling only extended to less than one
decade, and the results were not reliable.

(ii) Entire pattern: all tributaries, isolated streams, and
streams spanning top to bottom.We applied method A only
to Fig. 2~b!, and the results are shown in Fig. 8. We also used
methods B, C, and D to calculatedf , averaging over six
different windshields.

In Fig. 9 we observe the average of all the curves repre-
senting the mass of each individual stream versus its down-
hill length for one particular rain pattern@i.e., this picture
~method B! is an average over all the streams that form one
of the entire water patterns#.

Figure 10~a! shows the total massM versus the total
lengthL for the entire water pattern of Fig. 2~b! ~method C!.
Results from the pair correlation function method for the
entire water pattern are plotted in Fig. 10~b! according to the
scaling relation of Eq.~5!. We see a good scaling over two
decades. At the extremes, saturation effects due to the size of
the picture are observed.

The results are summarized in Table I.

IV. DISCUSSION

Narayan and Fisher~NF! @7# have recently published a
model for fluid flow which is applicable to a system which is
very similar to that investigated here. They consider the case
of a rough, random surface upon which a fixed amount of

FIG. 4. Result of method A. Number of trapezoidsN~e! needed
to cover the water structure of Fig. 2~a! in terms of their sizee for
the tributaries and isolated streams. The slope has an absolute value
of 1.3860.03.

FIG. 5. Plot of the mass of tributaries and isolated streams as a
function of its downhill lengthl ~method B! for a particular water
pattern. The average of all the individualdf yields a value of 1.34
60.03.

FIG. 6. Total massM as a function of total downhill lengthL
for the average of tributaries and isolated streams~method C!. The
slope obtained for this curve gives a fractal dimension
df51.4060.02.

FIG. 7. Tributaries and isolated streams obtained from Fig. 2 by
removing the streams that flow from top to bottom.
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fluid is initially placed. As the surface’s angle of incline is
slowly increased, the fluid collects into lakes with a certain
depth, which, when saturated, fill the adjacent ones under-
neath, forming clusters of lakes. If the angle of incline is
small, then the water does not fill the lakes completely.
When the angle of incline is larger, the length of the clusters
increases, reaching an infinite value at a critical threshold
angle. Below this limit, it is possible to see many isolated
clusters which are totally disconnected from the flow. At
threshold, which is the equivalent of the depinning transition,
there exists at least one flowing river from top to bottom
~e.g., at least one cluster whose correlation length is infinite!.
Above threshold one may distinguish more than one flowing
river, and far above threshold the flow is uniform, it being
difficult to distinguish any individual rivers.

For close to threshold conditions, NF found the value for
the fractal dimension in the downward direction to be 1.21
60.02 by numerical simulations of their model, and43 by
mean field theory. We consider the rain patterns discussed

here to be above threshold, since they all contained at least
one stream which spanned the image from top to bottom.
The patterns must be close to threshold, however, since oth-
erwise it would be very difficult to distinguish individual
streams, i.e., the water would be flowing in a sheet, with
little spatial separation.

The NF model is similar, but not identical to the fluid flow
studied here, since it deposits a fixed initial amount of liquid
onto a surface rather than continously raining fluid down
upon a surface tilted at a fixed angle. Since the fluid mass is
fixed, the NF model requires a varying tilt angle in order to
provide a force to drive the fluid flow. Watson and Fisher
~WF! @8# have very recently considered a model which is
more similar to the case studied here. In this model the par-
ticles move downhill on a square lattice, and the driving is

FIG. 8. Result of method A. Number of trapezoidsN~e! needed
to cover the water structures of Fig. 2~b! in terms of their sizee for
the entire water pattern. The slope has an absolute value of 1.46
60.05.

FIG. 9. Mass of each individual streamm vs its downhill length
l for one of the entire water patterns~method B!. The slope for this
plot yields a fractal dimension of 1.4760.01.

FIG. 10. Total massM as a function of total lengthL for the
entire water pattern,~a! using method C. The data plotted fitted to a
straight line, showing fractal scaling behavior withdf51.5160.02.
~b! Pair correlation functionC(r ) vs r using method D for one of
the entire water patterns. The slope of the curve is20.5660.05,
yielding a fractal dimension ofdf51.4460.02.

TABLE I. Fractal dimensiondf .

Method
Tributaries and
isolated streams Entire pattern

A 1.3860.03 1.4660.05
B 1.3460.04 1.4460.02
C 1.460.02 1.460.03
D 1.4460.01
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increased by adding particles to some fraction of the sites.
The WF model is stochastic, with a random capacity for each
site and random local rule determining where particles will
move when a given site overflows. WF argue that the statis-
tics of the model should be in the same universality class as
the NF model, and, with slightly different boundary condi-
tions, it would be applicable to water flow over dirty wind-
shields.

The value fordf which we observe for tributaries and
isolated clusters~which presumably have the same fractal
dimension above and below threshold! should therefore be
comparable to the fractal dimension predicted by the NF and

WF models. Our observed valuedf51.3760.05, while dis-
tinctly lower than that typical of actual river networks sub-
jected to erosion~df51.6–1.7! @1#, compares favorably with
the NF and WF prediction of43 by mean field theory within
the error of the measurement.
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